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Experimental measurements are presented for the hydrodynamic torque exerted on 
a stationary sphere situated at the axis of a slowly rotating viscous liquid at small 
rotary sphere Reynolds numbers (Re < 0.1) as a function of depth of submersion of 
the sphere below the free surface. Effects of free-surface proximity on the torque 
furnished the impetus for the study. Experiments were performed for different depths 
of sphere immersion beneath the free surface, varying from full to partial submersion. 
Rotation rates were maintained sufficiently low to approximate a planar interface. 
Torque measurements agreed well with existing theoretical predictions for both the 
interface-straddling and fully submerged sphere cases. In particular, the predicted 
continuity of the torque and its derivative at the interface-penetration point (where 
the sphere first starts to protrude through the free surface) was observed. Free-surface 
curvature as well as meniscus-curvature effects upon the torque were found to be 
negligible in the experiments, including even the extreme case where the sphere was 
in the almost fully withdrawn configuration. 

1. Introduction 
Rotating-sphere and falling-ball viscometers (Walters t Waters 1963 ; Ashare, Bird 

& Lescarboura 1965; Geils 1977; Cho & Hartnett 1979; Fluide & Daborn 1982) utilize 
theories of the hydrodynamic resistance of rotating and translating spheres immersed 
in fluids whose rheological properties are sought. The most widely used of these 
theories pertains to motion in unbounded fluids under various dynamical and 
kinematical conditions. This paper has as itsobjective the presentation ofexperimental 
results obtained for the hydrodynamic torque engendered by the relative rotation 
of a sphere in proximity to the free surface of a Newtonian liquid, and the comparison 
of these torque measurements with existing theory. 

2-2 
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Kirchhoff (cf. Lamb 1932) derived his well-known expression for the torque 

T, = 87tpa352 (1) 

on a sphere of radius a rotating at angular velocity 52 in a fluid of viscosity p. This 
expression applies at small rotary Reynolds numbers Re = a252p/p 6 1. Corresponding 
results for elastico-viscous fluids were obtained by Thomas & Walters (1964) and 
Wein (1979) for a rotating sphere, and by Waters & Gooden (1980) for a rotating 
oblate spheroid. Dennis, Singh & Ingham (1980) give Newtonian-fluid solutions for 
rotating spheres in the low- and moderate-Reynolds-number range, where inertial 
effects are sensible. Their results for the range 10 < Re < 100 are in excellent 
agreement with the experimental data of Sawatzki (1970). Dennis & Ingham (1982) 
obtained solutions valid in the range Re > 5000. Velocity fields predicted by their 
analysis show qualitative agreement with the experimental results of Bowden & Lord 
(1963) at locations in proximity to the sphere, and to those of Richardson (1976) at 
large distances. 

Theoretical analyses are also available (Childress 1964 ; Dennis, Ingham & Singh 
1982) for the slow translational motion of a sphere in a rotating fluid. Dennis et al. 
(1982) report favourable agreement between their results and the experiments of 
Maxworthy (1965). Equally worthy of note in this context are the experimental 
investigations of Taylor (1923), Davis (1965) and Maxworthy (1970). 

Theories have also been proposed for establishing boundary-proximity effects upon 
bodies rotating and/or translating a t  small Reynolds numbers near rigid container 
walls (Brenner 1964a; Sonshine et al. 1966; Cox & Brenner 1967a; Hocking, Moore 
6 Walton 1979; Munro, Piermarini & Block 1979; Hirschfeld, Brenner & Falade 
1984 for Newtonian fluids; Caswell 1970 for non-Newtonian fluids), as well as near 
free surfaces (Brenner 1964a; Kunesh 1971 ; Davis & O’Neill 1979) and interfaces 
separating immiscible fluids (Schneider, O’Neill & Brenner 1973 ; Majumdar, O’Neill 
& Brenner 1974; Ranger 1978; Leal & Lee 1982, O’Neill & Ranger 1979; Falade 1982). 
These studies point to the existence of substantial deviations from unbounded-fluid 
behaviour arising from the presence of boundaries nearby to the sphere. 

Attempts to improve upon the accuracy of viscometers of the types earlier 
described must contend with ever-present wall and/or free-surface effects. The 
confidence with which theoretically derived boundary-effect calculations of hydro- 
dynamic resistance may be employed to extrapolate these data to unbounded fluids 
is obviously enhanced by experimental confirmation of these purely theoretical 
predictions. Few such studies exist for cases of rotary motion (Mena, Levinson 6 
Caswell 1972), and none of which we are aware pertain to motion near a free 
surface. This dearth of data furnished part of the motivation behind the present 
study - which was in fact originally conceived (Kunesh 1971) in the broader context 
of experimentally studying low-Reynolds-number hydrodynamic ‘ coupling ’ (Brenner 
1964 b )  between translational and rotational motions of asymmetric particles. 

In addition to the viscometric emphasis cited above, much interest currently exists 
in the molecular modelling of interfacial transport processes. A recently proposed 
model (Brenner & Leal 1978, 1982) involves a spherical Brownian particle moving 
in proximity to, and straddling, a non-deformed interface separating two immiscible 
fluids. That theory depends critically upon knowledge of the Stokes resistance of the 
particle in relation to  its motion at and near the interface. In this context our 
experiments represent an additional contribution (Leal & Lee 1982; Berdan & Leal 
1984) towards further understanding of the hydrodynamic aspect of the interfacial 
transport phenomena. 
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Explicitly, the present paper summarizes the results of experiments performed to 
measure the viscous torque exerted on a stationary sphere present in a rotating fluid 
bounded by an effectively planar free surface at small Reynolds numbers (Re < 0.1). 
A brief summary of the contents of this paper is as follows. Relevant theoretical 
results are briefly reviewed in $2, where the fluid-mechanical equivalence of the 
stationary-sphere-rotating-fluid arrangement to that of the rotating-sphere- 
stationary-fluid case is pointed out (at least to the extent that centrifugal/inertial 
forces are negligible, so that the free surface remains planar). Section 3 provides a 
description of the apparatus employed in the experiments. Experimental procedures 
are detailed in $4. Finally, $5 presents the experimental results, comparing these with 
the theoretical results of Jeffery (1915) and Brenner (1964~) for a fully submerged 
sphere and those of Kunesh (1971) and Schneider et al. (1973) for a partially 
submerged sphere straddling the interface. 

2. Theoretical background 
By a simple extension of Jeffery’s (1915) bipolar coordinate solution for a sphere 

rotating symmetrically near a rigid plane wall, Brenner (1964~)  and Cox & Brenner 
(1967 b) derived the expression 

00 ( - l ) m + i  T 
Tm m--l sinh3 myo 

- sinh3yo X _-  

for the Stokes torque T on a fully submerged sphere slowly rotating in an otherwise 
quiescent viscous fluid about an axis normal to a planar free surface. The parameter 
yo is defined by the expression cosh yo = h/a (0 < yo < 00, 1 < h/a < 00),  with h the 
distance of the sphere centre from the free surface. For a / h  4 1, ( 2 )  takes the 
asymptotic form (Brenner 1964a) 

In  the limit it reduces to Kirchhoffs infinite-medium result (1).  Observe that the 
torques predicted by (2) and (3) are less than would obtain in the absence of 
boundaries. This diminished resistance contrasts with comparable translational 
results (Brenner 1961). 

The counterpart of (2) for a partially submerged sphere, obtained (Kunesh 1971 ; 
Schneider et al. 1973) from a toroidal coordinate solution of Stokes equations, is 

cash S ( X  -?lo) 
ds . 

F(qo) = s,” (’ +4s2) (coshm) (coshsr],) (5)  

Here the parameter yo is now defined by cosy, = h/a ( x  2 ?lo 2 0, - 1 < h/a < l) ,  
with h taken to be negative when the sphere centre 0 lies above the free surface of 
the liquid and conversely. Values of the function F(qo),  as well as 4 sin3y0 F(yo), are 
tabulated by Schneider et al. (1973). Limiting values of (4) of special interest are as 
follows : 

(a )  sphere totaEly submerged and tangent to the free surface (h/a = 1,  yo = 0) : 

T / T ,  = y(3) E 0.901 543, (6) 
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with (7) 

(k = 1,2,3,  ...), related to the Riemann zeta function (Abramowitz & Stegun 1964); 
(b)  sphere half-submerged (h /a  = 0, T~ = $c) : 

TIT, = g; (8) 

(c )  sphere totally external to the liquid and tangent to the free surface (h /a  = - 1 ,  
To = 7r) :  

T / T ,  = 0.  (9) 

It is demonstrated in the Appendix that for case ( a )  the limiting torque ratio (6), 
derived from (4), may also be derived from (2). Thus the torque varies continuously 
with sphere position at the point where the submerged sphere begins to protrude 
through the interface, corresponding to  h = a. Moreover, i t  is also shown in the 
Appendix that in this same limit the torque is a differentiable function of position; 
explicitly, at h/a  = 1 the derivatives of T/Tw with respect t o  h/a ,  obtained from the 
disparate formulas (2) and (4) respectively, are identical. 

All results cited above pertain to the case of a sphere rotating in an otherwise- 
quiescent fluid, whereas the reciprocal experiments reported here correspond rather 
to a stationary sphere in a rotating fluid. However, in the creeping-flow region, and 
for negligible centrifugal effects, it is easily demonstrated that only the relative 
sphere-fluid motion is pertinent. This further assumes that the paraboloidal shape 
of the (undisturbed) free surface, arising from the centrifugal and gravity forces, does 
not depart appreciably from planarity. The range of parameters selected for 
experimental investigation was designed to  render all such secondary effects 
negligible. 

3. Experimental apparatus 
Figure 1 depicts schematically the experimental apparatus, whose main components 

are described below. Further details are available elsewhere (Kunesh 1971). 
Cylindrical vessel. The vessel in which the experiments were performed consisted 

of a 30 in. (0.76 m) diameter by 4 f t  (1.22 m) long transparent plastic (Plexiglas) 
circular cylinder of !j in. (1.27 cm) nominal wall thickness. Cylinder circularity was 
found to  be a maximum of 4 in. (1.27 cm) out of round. During the experiments the 
vessel was filled to  a depth of about 42 in. (1.07 m) with the working fluid, whose 
physical properties are described in table 1 .  A dust cover with a small hole drilled 
through i t  capped the cylinder. 

A 1 in. (2.5 cm) thick vessel support plate served adequately to  support the rather 
large load ( -  500 kg) created by the fluid-filled cylinder. In  turn, this support plate 
rested on a 9.75 in. (0.25m) outer diameter thrust bearing rated a t  360001b 
(16330 kg), which was held in place by a retaining ring centred with respect to the 
vessel support plate. 

Vessel rotation was achieved by means of a 3 in. (7.6 cm) diameter hard-rubber 
friction wheel in contact with the underside of the vessel support plate. The friction 
wheel was mounted on a shaft, which was itself connected (via an 18: 1 gear reducer) 
to the shaft of a n t  h.p. (93.3 W) Bodine motor equipped with a variable-speed control 
unit. 

Sphere. The sphere employed in all experiments was a 3 in. (7.6 cm) diameter nylon 
sphere with a manufacturer’s guaranteed roundedness tolerance of & 0.05 yo. 
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FIQURE 1. Schematic diagram of apparatus. 

Temperature Viscosity Density 

70 6940 0.8766 
72 6280 0.8760 
74 5680 0.8755 
76 5160 0.8749 

( O F )  (CP) (g cm-Y 

TABLE 1.  Fluid properties as a function of temperature 

Permanently attached to, and embedded in, the sphere was a 0.013 in. (0.325 mm) 
diameter tempered-steel wire, whose imagined continuation passed through the 
sphere centre. This sphere-wire assembly was coupled to a torsion-measuring 
subsystem (situated outside of, and above, the vessel), which was rigidly attached 
to a structural member of the laboratory building. With the sphere fully submerged 
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at an effectively ‘infinite’ distance below the free surface, approximately 10 in. 
(0.25 m) of this wire was immersed in the liquid. 

Alignment between the cylindrical-vessel axis and sphere centre was achieved by 
suspending a plumb bob from the sphere-wire coupling mechanism to a centrepunch 
mark in the vessel base prior to attachment of the sphere. Coincidence of the sphere 
centre and cylinder axis was estimated to be within several thousandths of an inch. 

Torque-measuring system. Torque measurements were performed by using the 
‘ light-lever ’principle. This method, commonly employed in rheological investigations, 
consists in essence of reflecting a focused monofilament beam of light from a mirror 
mounted a t  the end of a calibrated torsion wire. Effectively, the linear displacement 
of the filament’s image at  a recording point located at a fixed distance from the mirror 
was measured and related to the angle through which the torsion wire is twisted by 
the action of a torque. Each of the three different torsion wires used (of nominal 
diameters ranging from 0.01-0.022 in. (0.25.0.56 mm)) was calibrated by measuring 
its period of free harmonic rotary oscillation with a disk of known moment of inertia 
attached to the wire - a standard procedure. 

Fluid. A high-viscosity fluid was used to realize appreciable hydrodynamic torques 
at the relatively low fluid-rotation speeds employed to minimize centrifugal and 
inertial effects. Oronite polybutene 18 (Chevron Chemical Company) was used. In 
addition to being Newtonian and possessing viscosities in the range of interest at  room 
temperature (table l ) ,  this fluid is both hydrophobic and chemically stable over 
extended periods of time. 

Considering the significant variation of viscosity with temperature (table 1 ), 
adequate temperature control was given considerable attention. This control was 
simply achieved by using a room air conditioner capable of maintaining temperature 
uniformity in the laboratory environment to within & 1 O F  cycles over 2-3 h time 
periods. The large fluid mass effectively insulated the liquid in the vessel from these 
small temperature oscillations. This fact was explicitly confirmed by temperature 
measurements made at various points within the liquid immediately before and after 
each run - in the former case after allowing a warm-up’ period sufficient to suppress 
any initial transients. 

3.1. Wall-effect estimates 
First-order boundary effects upon the torque experienced by the sphere, arising 
respectively from the presence of the cylinder wall (radius R,) and cylinder bottom 
(h, = distance of sphere centre from base) are of orders (u/R,)~ and ( ~ / h , ) ~  (Brenner 
1964~).  For the experiments reported here, a/R,  - 0.10 and a/h, - 0.06, leading to 
negligibly small wall effects of the order of one part in lo4 - well below the limits of 
detection. Indeed, it was such considerations that resulted in the large size of the 
equipment employed in our experiments. 

3.2. Sphere-support torque correction 
The hydrodynamic torque T, acting upon the thin wire (radius b )  supporting the 
immersed sphere may be estimated as 

T, = 47t,uSlLb2 

from the well-known solution (Lamb 1932) for a rotating circular cylinder. Here L 
is the depth of immersion of the wire below the free surface. Thus, in comparison with 
the torque T, on the sphere, 
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For a wire diameter 2b = 0.13 in., a length L = 10 in. and sphere diameter 2a = 3 in., 
this yields TWIT, x which is again completely negligible compared with other 
sources of error. 

4. Experimental procedure 
Essentially the same procedure was used for both the fully and partially submerged 

sphere experiments. As previously indicated, the sphere was joined to the light lever 
via the 0.013 in. diametral wire permanently joined to the sphere. Distance from the 
sphere centre to the free surface was determined by means of a cathetometer. For 
those experiments specifically involving free-surface effects the surface level was 
taken as that of the bottom of the vessel-wall meniscus. Positioning of the sphere 
relative to the surface was achieved by raising or lowering the vessel, and hence liquid 
level, as required, while keeping the sphere and torque-measuring subsystem fixed. 

As described earlier, careful attention was paid to temperature control to ensure 
the existence of isothermal conditions throughout the course of the experiments. To 
further ensure uniformity, after recording the initial position of the light beam and 
commencing vessel rotation, one hour was allowed to elapse before recording the 
torque. If, before the actual run, temperatures measured at any of several points lying 
in close proximity to the sphere deviated from one another by more than 0.1 O F ,  or 
if these temperatures changed by more than 0.1 O F  over the course of the run itself, 
the data were discarded. Given the probable several percent inaccuracy of the 
viscosity data tabulated in table 1, this 0.1 O F  temperature range was chosen to be 
consistent with that degree of accuracy. 

Vessel rotation speeds varied over the range from 0.005 to 0.1 rev. s-l. Angular 
velocities were repeatedly measured by means of a stop-watch throughout the course 
of each experiment to verify constancy of the vessel rotation rate. This constancy 
was further confirmed by monitoring the light beam for possible drift in the torque 
reading. Typically, successive rotation speed readings lay within 0.25 % of one 
anot her. 

To confirm proper functioning of all the elements entering into the experimental 
scheme, a careful series of ‘infinite-medium ’ experiments were first performed. Here 
the sphere centre was located (approximately) at that unique point (Brenner 1964a) 
along the axis at which - correct to lowest orders in a/R,, alh, and alh - the 
boundary effects engendered by the proximity of the cylinder walls and bottom to 
the sphere are exactly offset by the proximity of the free surface. When compared 
with the theoretical predictions of (l) ,  torques measured in this mode (see figure 2 )  
provided a high degree of confidence in the overall experimental programme. 

4.1. Data correction 
In the absence of the sphere the free surface of the rotating liquid is paraboloidal 
rather than flat, corresponding to the axisymmetric equation z-zo = Q2R2/2g. Here 
z-zo is the height of the interface above the apex zo at the radial distance R from 
the cylinder axis, g being the acceleration due to gravity. The fluid level at  the nose 
zo of this theoretically deformed surface was calculated from joint knowledge of the 
initial liquid level in the vessel in the absence of rotation and the known speed of 
rotation. The difference between these two levels was always less than 3% of the 
cylinder radius. Except for those runs where the sphere was almost exactly 
half-submerged, this difference was small compared with I h I. It was therefore deemed 
sufficient to correct for free-surface deformation only insofar as h was affected. 
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10-3 10-2 100-1 1 
Re 

FIQURE 2. Moment coefficient C,  = T/85rpa5Q2 versus rotary Reynolds number Re = uzQp/,u in 
the effectively unbounded fluid. The solid line represents the theoretical Stokes-flow formula 
C, = l/Re. Experimental results are denoted by the circles. 

Accordingly, the effective distance I h I of the sphere centre 0 from the free surface 
was taken as the distance between 0 and the nose of the theoretical paraboloid. 

Corrections arising from spherefree-surface meniscus effects for partially pene- 
trating spheres were estimated to be small, except perhaps in the limit where the 
immersed portion of the sphere was itself very small. ( A  posteriori verification of the 
smallness of the meniscus correction to the torque is implicitly demonstrated in 
figure 4. There, the measured torque is plotted against both hla and h’la, where 
h and h‘ are the respective distances of the sphere centre to  the bulk-fluid free 
surface and to the top wetted circle on the circumference of the sphere, which always 
lay slightly above the main bulk surface of the liquid. On this same graph is also 
plotted for comparison the corresponding theoretical formula (a).) 

5. Experimental results 
Figures 2 4  summarize the results obtained. 

5.1, ‘ Unbounded ’ Jluid 
Define the non-dimensional rotary moment coefficient C, = T/8pa5R2. For the 
unbounded case, corresponding to (i) ,  the theoretical value of this coefficient is 

C, = i / R e ,  (10) 

with Re defined as before. Figure 2 is a log-log plot of measured and theoretical values 
of C, versus Re. Good agreement is clearly evident, with an average deviation lying 
in the range 1 B-l.5 yo and a maximum error of about 3 Yo. 
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FIGURE 3. Torque on a submerged sphere in proximity to a free surface. Data points are 

indicated by circles. The solid curve represents the theoretical formula (2). 

5.2. Fully submerged sphere 
Figure 3 compares experimental and theoretical values of the torque ratio? TIT, 
versus h / a  for circumstances in which free-surface effects are sensible. Angular 
velocities varied from about 0.021-0.061 rev s-l, corresponding to sphere Reynolds 
numbers in the range Re = 0.03-0.09. Again agreement between experiment and 
theory is satisfactory. Though the disparity may seem excessive in the case of several 
runs, it should be noted that the ordinate scale is greatly expanded in the plot. (A 
more appropriate scale for assessing the accuracy of these fully submerged sphere 
results is that shown in figure 5 - explicitly the range of values 1 .O < h / a  < 3.0.) Thus 
the average deviation is only 1.6 yo and the maximum error 4.4 yo - numbers not 
appreciably different from those cited in connection with figure 2. Moreover, the 
departures from theory do not appear systematic in algebraic sign. Especially 
gratifying i s  the excellent agreement observed for the tangent-sphere case h / a  = 1, 
where free-surface penetration just begins. We are unable to explain why the 
maximum discrepancies in these experiments exceed, by a factor of perhaps two, 
those to be expected from known experimental uncertainties in viscosity, angular 
velocity, torsion-wire torque calibration, sphere position, etc., as well as from 
theoretical uncertainties - including free-surface non-planarity , centrifugal and 
inertial effects, wall effects, wire drag, etc. 

5.3.  Partially submerged sphere 

Figure 4 shows the observed variation of the experimental torque ratio TIT, with 
both h/a  and h’la, along with the corresponding theoretical ratio at the given h / a  
value. Angular velocities varied from 0.013-0.061 rev s-l, corresponding to sphere 

t Here, as in later figures, T is the actual experimental value, whereas T, is computed from (1) .  



38 J .  G .  Kunesh, H .  Brenner, M .  E .  O’Neill and A .  Falade 

0.9 

0.8 

0.1 

0.6 

TE 0.5 

0.4 

0.3 

0.2 

0.1 

0 

- 

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

hla 

FIQURE 4. Torque on a sphere straddling a free surface. The solid curve represents the theoretical 
solution (4) for this case: 0,  experimental results for the hypothetical planar free surface, namely 
h/a;  A, experimental results for the ‘top wetted point’ of the sphere, h’/a. 
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FIQURE 5. Composite of figures 3 and 4, demonstrating the continuity of the torque and its posi- 
tional derivative across the tangency point h / a  = + 1 .O connecting the two different regimes. 
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Reynolds numbers in the range Re = 0.02-0.09. That the meniscus effect was indeed 
negligible may be inferred from the fact that better agreement between theory and 
experiment exists for the h/a values than for the comparable h'/a values. In  any event 
the experiments accord quite well with the theoretical predictions of (4). 

5.4. Composite case 

Continuity of the partially and fully submerged sphere cases is illustrated in figure 5, 
representing a composite of figures 3 and 4 (the latter only for the hypothetical 
planar-free-surface case) covering the entire range ( -  1.0 < h/a  < 00)  of possible 
degrees of sphere immersion. The experimental data are clearly consistent with the 
predicted continuity of both the torque ratio T/Tm and its derivative at the tangency 
point h / a  = + 1.0. 
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from the American Chemical Society, the Ford Foundation and the National Science 
Foundation. H. B. was supported by the National Science Foundation. M. E. O'N. was 
supported at CarnegieMellon University in a fellowship of Mellon Institute sponsored 
by the American Iron and Steel Institute. A.F. is grateful to the Chemical 
Engineering Department of the Massachusetts Institute of Technology for their 
hospitality during his sabbatical there, and to the University of Lagos for financial 
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Appendix. On the continuous variation of the torque and its derivative 
with sphere position 

Equation (4) may be written alternatively as 

- - JOm (4$+ 1) (1 - tanh x 
T s i n 3 ~ ,  -- 

Tm 270 T O  

upon setting s = x/v0. On writing k = l /qo,  (A 1) is equivalent to 

where 

Now 

P = Jomxp( 1 - tanh x) dx, 

l m  
Q = 2J (1-tanhx)dx, 

0 

1-tanhx = 2[1-(l+e-2x)-1] 
m 

m-1 
= 2 X ( -  l)m+l exp ( -  2mx), 



40 
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where y( 1 )  = In 2 = 0.693 147 and 7(3) = 0.901 543 (Abramowitz & Stegun 1964). 
Furthermore, 

, - 2 k x ~  W 
Y 

1 + e-zkxx = 2 Z ( -  l)m+l exp ( -2kmxz), 

tanh x = II: + O(x3) ,  

m-1 

and, since for small I x I 

i t  follows from Watson’s lemma (Sneddon 1951) that for k % 1 

2(12+1)! ( - l ) m + l  
C mn+2 + o(k-(n+49 (n = 0 , 2 ) ,  

R n ( k )  - (2kx)n+2 m-l 

which gives 

1 
RZ(k) - =+W-Y. 

Consequently (A 2) yields 

T 
- = 2P-(P-Q)7,2+0(~j$) ,  
T W  

whence in the limit yo = 0 there results 

T 
lim - = 7(3), 

h/a-1- Tm 

since coshv, = h/a .  It also follows that 

For h/a+ 1 + an expansion of (2) for small yo, which may be carried out using a 
matched-asymptotic-expansion method similar to that of Cox & Brenner (1967b), 
yields 

T 
- = ~ ( 3 )  +hi [7(3)-7(1)1 +0(73. 
T m  

(A 14) 

Thus 

and 

. T  T 
lim -= lim - 

h/a+l- Tm h/a+l+ Tm 

lim [-(x)]= d lim [-(z)]. d 
h/a+l- d ( h l 4  T W  h/a+l+ d(h/a) T~ 

showing that the torque is both continuous and differentiable a t  h/a = 1, i.e. as the 
sphere penetrates the free surface. 
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